Antioxidants in HIV Positive Children

Aruna Srinivas and Bina F. Dias

Department of Biochemistry, Lokmanya Tilak Municipal Medical College, Sion, Mumbai, India

ABSTRACT

Objective. To assess the antioxidant status in HIV positive children.

Methods. HIV positive children under the age group of 3-12 years from lower socioeconomic strata were chosen for the study (Group 1). The values were compared with normal children (Group 2) not suffering from any disease in the same age group and similar socioeconomic strata. The antioxidants chosen for the present study were vitamin A (Retinol), vitamin C (Ascorbic acid) and vitamin E (α-tocopherol).

Results. Results obtained were subjected to statistical analysis using student ‘t’ test (in the present study ‘z’ test was applied). The antioxidants vitamin A, C and E decreased in HIV positive children as compared to controls. Vitamin A was significant to the level of p<0.01 and vitamin C and E to the level of p<0.001 and p<0.02 respectively.

Conclusion. The decrease in antioxidants A, C and E in HIV positive children is due to increased utilization of antioxidant micronutrients because of increased oxidative stress caused due to free radicals. [Indian J Pediatr 2008; 75 (4) : 347-350]

E-mail: fadias15@rediffmail.com

Key words: Antioxidants; HIV; Oxidative stress

Human Immunodeficiency Virus (HIV), the etiological agent of Acquired Immunodeficiency Syndrome (AIDS) is a highly mutable virus belonging to the lentivirus subgroup of the family Retroviridae. This bloodborne and sexually transmitted disease evolved from Simian Immunodeficiency Virus (SIV) that affects monkeys. AIDS is a condition whereby the body's specific defence system against all infectious agents no longer functions properly.

Literature documents that people with HIV/AIDS are in a state of oxidative stress, because of excess production of free radicals. Results from laboratory experiments (Sean Howein treatment update, 1997, Vol 77, No 7) suggest that chronic oxidative stress can affect the immune systems fight against HIV, possibly by: increasing the production of HIV, weakening the immune system, making T cells destroy themselves, causing cells to make abnormal chemicals and making the body more sensitive to toxic effect of certain drugs.

Carole and Craig and many other researchers agree that in the early stages of infection, a deleterious reduction-oxidation (redox) imbalance may occur. This means that increased damage causing reactive oxygen intermediates called “free radicals” are generated which may cause damage to cell membranes, proteins and nucleic acids resulting in stores of naturally occurring antioxidant reducing agents being depleted. Of the mechanisms contributing to this, progressive oxidative stress and increased lipid peroxidation induced by the production of reactive oxygen species (ROS) play a critical role in the stimulation of HIV replication and the of immunodeficiency. Such damage may be prevented or moderated by a normal antioxidant defence system that scavenges the ROS.

The purpose of the present study was to measure the concentrations of these various antioxidant scavengers viz. vitamin A, C, and E in the serum of HIV positive children and compare the values with age matched controls.

The role of vitamin A in HIV-I infection has been of great interest during the past ten years. Early observational studies found strong associations between low serum retinol concentration and HIV-I disease progression and infectivity. Several studies suggested a decreasing trend in vitamin A (retinol) levels in HIV positive children.
Lower levels of vitamin E may play a pathogenic role in the onset and development of AIDS and other infections. Several studies revealed lower vitamin E levels in HIV positive children. Ascorbic acid suppresses human immunodeficiency virus (HIV) replication. A decreasing trend in vitamin C was noted by many researchers in HIV positive children.

MATERIALS AND METHODS

A total of 165 children were studied for a duration of 2 years and categorized as follows:

Group 1: 80 HIV positive children (46 males and 34 females) in the age group of 3-12 years residing in the slum areas located at Dharavi and of lower socio-economic strata of the society attending routine outpatient department (OPD Pediatrics) of Lokmanya Tilak Municipal Medical Hospital situated amidst Mumbai’s biggest slum known as Dharavi.

Group 2: 85 children in the age group 3-12 years (53 males and 32 females) were studied as controls. The control group comprised of children not suffering from any disease of the same age group and of similar socio-economic strata residing in Dharavi.

10 ml of venous blood was drawn by venepuncture in different containers. For the estimation of vitamin C, blood was collected in heparin vacutainer and for vitamin A and E, blood was collected in plain vacutainer. The following tests were done:

1. Vitamin A by a spectro-photometric method (Paterson and Wiggins method) using ultraviolet spectrophotometer.
2. Vitamin C was estimated by Harris and Ray method.
3. Vitamin E by Baker and Frank method.

RESULTS

The antioxidants vitamin A, C and E were monitored in 80 HIV positive children (males 46 and females 34) in the age group of 3-12 years (mean ± S.D age 7.5 ± 2.8) and 85 control children (males 53 and females 32) of the same age group (mean S.D of age 8.7 ± 2.5). The results were subjected to statistical analysis. Unpaired ‘t’ (in the present study ‘z’ test) was applied and the statistical significance was established.

The mean ± S.D of vitamin A in HIV positive children was 0.3 ± 0.1 mg/L and that of the control group was 0.4 ± 0.24 mg/L. The values obtained from our study showed decrease in the level of vitamin A in HIV positive children as compared to control group. The statistical significance p < 0.01 showed that the decrease was moderately significant. Table 1 and Fig 1.

Vitamin C in HIV positive children exhibited a marked statistically (p<0.001) significant decrease in their level as compared to controls (0.79 ± 0.36 mg/dl to 0.58 ± 0.36 mg/dl). Table 1 and Fig 2. A considerable decrease in vitamin E level was observed in HIV positive children (mean ± S.D is 9.03 ± 2.80 mg/L) than in control group (mean ± S.D is 10.08 ± 2.69 mg/L). The statistical analysis p<0.02 showed a moderate significance. Table 1 and Fig 3.

These results indicate that HIV positive children are deficient in vitamin A, C, and E. Table 1 depicts the mean ± S.D values of vitamin A, C and E.

Among the antioxidants A, C and E, it was observed that there is more depletion of vitamin C as compared to A and E. This indicates that HIV positive children are more deficient in vitamin C than in vitamin A and E.

Table 1. Antioxidant Levels in HIV Positive and Control Children

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HIV-positive children</th>
<th>Control children</th>
<th>p Value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=80</td>
<td>n=85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vit-C (mg/dl)</td>
<td>0.58 ± 0.36</td>
<td>0.79 ± 0.36</td>
<td>< 0.001</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Vit-A (mg/L)</td>
<td>0.30 ± 0.17</td>
<td>0.40 ± 0.24</td>
<td>< 0.01</td>
<td>significant</td>
</tr>
<tr>
<td>Vit-E (mg/L)</td>
<td>9.03 ± 2.80</td>
<td>10.98 ± 2.69</td>
<td>< 0.02</td>
<td>significant</td>
</tr>
</tbody>
</table>

Values Expressed as Mean ± Standard deviation

Fig. 1. Vitamin A levels in Control and HIV positive patients

Indian Journal of Pediatrics, Volume 75—April, 2008
Antioxidants in HIV Positive Children

The present study showed decreased levels of vitamin A in HIV positive children. The fall in vitamin A level was from mean and standard deviation of control (0.41±0.24 mg/L) to mean and standard deviation of HIV positive children (0.30±0.17 mg/L). The results were in general agreement with those of previous studies by Jared M Baeten, Richardson et al in which lower vitamin A levels were noted in HIV positive children than in noninfected normal controls. Serum retinol declines during acute phase response because of reduced synthesis of retinol binding protein. Retinol is transported in a 1 to 1 complex with retinol binding protein (RBP). Since RBP and retinol exist in circulation in equimolar concentration, RBP could be used as a measure to predict marginal vitamin A status, as determined by serum retinol. RBP was a sensitive and specific marker for serum retinol concentration.5

A close relationship between infectious disease and vitamin A status has long been known from both epidemiological studies of human beings and studies of experimental infections in animals. Vitamin A deficiency seems to be associated with altered immunity, due to abnormalities in T cell subsets and selective loss of CD4 cells from lymph nodes, thymus and spleen. Body stores of vitamin A may be depleted during serious infection because of decreased dietary intake, malabsorption, increased metabolism and urinary losses. Retinol is excreted in urine of AIDS patients. Therefore, there is deficiency of retinol in AIDS patients. This explains the decreased concentration of vitamin A in HIV positive children in the present study as compared to controls.

In the present study, we observed significantly lower levels of ascorbic acid in HIV positive children than in normal controls. These results were in accordance with studies carried out by many researchers Johane P Allard, Jenny Chau et al.

The deficiency of vitamin C in HIV positive population is probably due to increased utilization of vitamin C which is on account of increased oxidative stress. Oxidative stress causes formation of peroxyl radicals. Although ascorbic acid cannot scavenge lipophilic radicals within the lipid compartment by itself, it acts as a synergist with tocopherol. This reduced ascorbic acid level in HIV positive children could be deleterious to the child as particular neurons may be vulnerable to damage resulting in the development of dementia.

Results of the present study in vitamin E on HIV positive children showed significantly lower levels as compared to non-infected controls. This is in accordance with several studies by Periquet B A, Tamnes N M, Lambert et al which documented significantly low levels of vitamin E in HIV positive children than in controls.6,7,12 In HIV positive children, due to oxidative stress free radicals are produced. Vitamin E a major lipid soluble antioxidant protects against lipid peroxidation by scavenging these free OH radicals, thus explaining the fall in vitamin E levels. Furthermore in HIV positive children, prolonged deficiency vitamin E could impair fat absorption because tocopherol is found dissolved in the fat of the diet and is liberated and absorbed during fat digestion.

REFERENCES

6. Periquet BA, Jannes NM, Lambert WE et al. Micronutrient